
GameStick SDK

© 2013 PlayJam Ltd.

19 April 2013 Version 1.0.3

Developer Guide

GameStick SDKI

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Table of Contents
Part I Introduction 1

... 21 SDK Overview

Part II GameStick Standardization and UI
Guidelines 7

... 71 General Guidelines

... 82 On-line Services SDK Usage Guidelines

.. 9In-App Purchasing Guidelines

... 113 Controller Guidelines

.. 12Button Mappings

... 134 Adapting from Mobile or Tablet

... 145 GameStick Images

Part III Developer Setup Guide 17

... 171 Java

... 192 Marmalade

... 213 Unity

Part IV API Reference 25

... 251 Java API

.. 26DatabaseInterfaceService

... 27Leaderboard APIs

... 29Save State APIs

... 29Achievements APIs

... 30Analytics APIs

... 31In-app purchasing APIs

.. 32IJavaDatabaseInterfaceResponse

.. 36Achievements

.. 37AppItems

.. 38LeaderboardData

.. 39DownloadServiceInterface

.. 41IDownloadResponse

... 432 C++ API

.. 44DatabaseInterfaceServiceInterface

... 46Leaderboard APIs

... 47Save State APIs

... 48Achievements APIs

... 49Analytics APIs

... 50In-app purchasing APIs

.. 51IRequestResponse

.. 55Achievements

.. 57AppItems

.. 58LeaderboardData

.. 60DownloadServiceInterface

.. 61IDownloadResponse

... 633 Unity API

.. 65PlayJamServices

... 66Leaderboard APIs

IIContents

II

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

... 68Save State APIs

... 68Achievements APIs

... 69In-app purchasing APIs

... 71Analytics APIs

... 71Dow nload service APIs

.. 72ServiceResponseHandler

.. 73JSON Response Data

Index 0

III GameStick SDK

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Introduction 1

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Section 1
Introduction

The GameStick SDK provides a set of APIs which allow your game to make use of the PlayJam Online
Services.

The following three steps can get you publishing games on the GameStick:

1. You can develop games for GameStick using various different development environments that can

compile to Android, such as Unity, C++ (via Marmalade or the Android NDK) or Java.

2. Register and download the GameStick SDK from the Developer Site. Versions of the SDK are
available for Unity, C++ and Java. Use the API calls in the SDK to add a range of services and
functionality like controller support, billing, and social aspects such as leader-boards and
achievements.

3. Compile your application to Android and submit it through the PlayJam Publishing Portal for
distribution to GameStick.

About the PlayJam Platform

The PlayJam Platform actually consists of two things:

The PlayJam Publishing Portal

This is a web-based management application used by developers to register themselves with
PlayJam, upload games onto the servers, and manage and configure the PlayJam on-line services
used by their games.

Note: at the time of publication, you can't create your own accounts and data. In the meantime, you
can either contact us to ask us to add something, or use the following:

Java — name your package com.playjam.servicesamples and your main activity
com.playjam.servicesamples.MainActivity

C++ — name your package com.playjam.cppsample and your main activity
com.playjam.cppsample.Main

Unity — name your package com.playjam.gamestick and your main activity
com.unity3d.player.UnityPlayerProxyActivity

You should then be able to make API calls and at least get some test data back for achievements,
etc.

GameStick SDK2

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

The GameStick SDK

The SDK is the core component of the PlayJam platform. It provides a simple set of APIs which you
can call from Unity, Marmalade, C++ or Java in order to access the on-line services provided by
PlayJam.

What to read next

We recommend that you tackle the information provided here in the following order:

1. Review the SDK Overview for a summary of what is provided and how it is structured.

2. Make sure you understand the Standardization and UI Guidelines which you need to be aware of when
designing and coding your game.

3. Check the relevant parts of the Developer Setup Guide section for how to set up before you can start
building against the SDK with various platforms.

4. Refer to the relevant API Reference section for details of the APIs you can call to make requests of the
services provided by the SDK, and what you need to implement in order to handle the responses.

The rest of this document is concerned with the GameStick SDK. For more details of the the PlayJam
Publishing Portal and what you need to do to get your game submitted and accepted, see the separate
documentation. You'll need to understand some details of what items (achievements, purchasable items, etc.)
you set up via the PlayJam Publishing Portal when writing your code to use the SDK.

Note that this site is a work in progress and we expect to add further documentation as the SDK develops, so
check back here regularly.

1.1 SDK Overview

The GameStick SDK provides access to the on-line services provided by the PlayJam Online Services.

This is actually implemented on the GameStick by a service running on the stick that responds to the API
calls you make, and connects to the PlayJam web server and handles all the requests. As a developer, you
do not need to know anything about how the web services actually work, or how to establish a web connection
- you simply make calls to the API and everything is handled for you.

Supported on-line services

The SDK currently supports the following back-end PlayJam Online Services:

Introduction 3

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Leader boards module:

Enables players to register high scores by game or game bundle. Customizable by country, or region, by
device or by time.

Save state module:

Allows a player to save the score and level of a game and resume playing later. Data is stored on the
PlayJam Cloud Storage servers.

Awards and achievements module:

Allows the developer to give any awards or achievements associated with the game. These
accomplishments are stored in the player’s profile and can be viewed in game. Awards and achievements
are defined and managed in the PlayJam Developer Application.

Analytics module:

Automatically save out data to the PlayJam servers about any feature or event from your games which
you wish to analyze. Events can be defined and managed in the PlayJam Developer Application.

Billing / purchasing module:

Transaction engine for all payments. We support credit and debit card payments globally as well as
mobile payment solutions in many markets. Provides for almost any type of game or in-game transaction
and links to virtual currency system. Used for in-game micro transactions, pay per play, subscription, etc.

The structure of the GameStick SDK components

The diagrams below (Illustration 1 and Illustration 2) shows the structure of the GameStick SDK components.
Illustration 1 on the left shows the structure for Java applications. Illustration 2 on the right shows how C++
applications are structured:

GameStick SDK4

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

The items in green represent your application code. The items in blue represent PlayJam libraries that will be
built into the final application, and the items in yellow represent Android services that are either part of the
OS or provided by PlayJam. The C++ set-up involves a C++ wrapper which we provide and use of JNI (the Java
Native Interface) to allow this to talk to Java. The C++ API we provide simply maps onto the Java version of the
API without you having to perform this wrapping yourself. The Java version of the GameStick API will then
make the relevant calls to the service running on the GameStick, which listens for these calls and accesses
the PlayJam Online Services via the internet.

Note: the situation for Unity is slightly different in that the Unity version of the SDK download provides C#
scripts which wrap around the Java interface, so from your Unity project you only need to call functions from
these scripts, but the principle is similar.

The general procedure for calling a service is shown in the diagram below.

Introduction 5

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

For each request, there is always a status result indicating the result of the request dispatch. There is also an
optional response containing the requested data. This is in the form of a Messenger object which the service
uses to post data back to the calling application. The Java Service Binding object passes this data to the Java
Interface object which then parses the data for consumption by either the Java App or a C++ application
accessed via the JNI interface. The only slight difference for C++ users is that they must issue an Update
request to the SDK at intervals to prompt the service to respond (this is automatic with Java).

For those readers who don't find such diagrams helpful, don't worry. The main thing to remember is that you
will make an API call to the service running on the stick which will generate a response — your code will
receive these responses via some response handler class that you need to implement (the response methods
called will either be one which returns the data you requested, or if there was an error, an error handler will be
called). All you need to do is implement these response handlers as described in this document and then add
your code to do whatever you wish to do with the data. You may like to think of the response handlers as
delegates or call-backs that you need to provide and which the service will call.

Everything else is hidden from you, so your code doesn't need to worry about getting an internet connection to
the server, or anything of that nature — this is taken care of by the SDK service running on the stick.

What you need to provide

As well as making calls to the API functions themselves, you will have to register delegate methods or call-
back functions with the API that will handle the data returned from the web service. Classes to do this are
provided in the SDK, so you just need to implement these classes in your code. Example code is provided to

GameStick SDK6

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

show how this works. C++ users will also need to call an Update() API to ask the service to send any pending
messages back to your application at regular intervals.

Note that currently, only the Java and C++ implementations of the SDK provide any ability to parse the data
returned by the service. If you are using Unity, you will need to parse the JSON data yourself (we've provided
some information about the format returned in the Unity reference).

GameStick Standardization and UI Guidelines 7

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Section 2
GameStick Standardization and UI

Guidelines

Before submitting your game, you need to ensure you have complied with the following guidelines:

General guidelines

Controller guidelines

On-line services SDK usage guidelines

Adapting from mobile / tablet

We've also provided the following collateral for you:

GameStick controller image files (for use in your UI)

2.1 General Guidelines

Please observe the following guidelines in your game:

Game

The game must support full screen mode at 16:9 aspect ratio. Game resolution must be at least
960x540 and at most 1920x1080. Other resolutions supported in the 16:9 aspect ratio are 1024×576,
1280×720, 1366×768, 1600×900.

Graphics Quality – If the game supports multiple graphics mode, the game must default to the best
quality mode that suits the GameStick v1.

Controller support – If the game supports multiple control schemes, it must default to support the
GameStick controller.

The game should maintain a frame rate of 25 FPS on average.

Menus

Roll over states are required in menus to highlight selected option.

GameStick SDK8

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Menu items should be browsable using the D-pad or Joystick.

When a menu that contains options is loaded, a reticle/border should surround one option by default.

Volume Controls are required in the settings or options menu.

An Exit confirmation menu is required before quitting the game .

Menus should include instructions on navigating using the controller, e.g.: “A - Select” “B - Exit”.

Links

Web views to render web pages or linking to a browser are not supported. All links will be disabled
hence should be visually removed from the game.

Advertisements – Only ads that link to other games in the GameStick Store will be supported.

More Games Links – Links to games on non GameStick stores must be replaced with links to the
GameStick store instead.

Social Media Links (Facebook / Google+ / Twitter) – URLs to open Social Media pages on a browser
will not open a browser window. However, Social APIs including Facebook Connect can be used.

Tutorials

Tutorials for game controls should reflect the use of the controller. For example, use 'A TO
CONTINUE'.

2.2 On-line Services SDK Usage Guidelines

To access the on-line services you need to set up game data (purchasable items, achievements, and so on)
using the PlayJam Publishing Portal, and then use the SDK to access the services in your game.

We recommend that you use the following services via the SDK:

In-game purchase

All in-game purchase is facilitated by our in-app billing API. All billing must be through this API. See
the In-App Purchasing Guidelines topic or contact us for details.

Achievements

It is recommended to use the GameStick Achievements API to leverage the GameStick Achievements
UI system. Please refer to SDK documentation or contact us for details.

Save State Module

Allows a player to save the score and level of a game and resume playing later. Data is stored on the
PlayJam Cloud Storage servers.

GameStick Standardization and UI Guidelines 9

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

See the SDK Overview (and the API reference if necessary) for more details.

2.2.1 In-App Purchasing Guidelines

The GameStick SDK provides you with the facility to provide in-app purchasing, so that players can buy
additional levels, upgrades and so on, and generate additional revenue for you.

You will need to use the The PlayJam Publishing Portal to create the purchasable items for your game (each
item will be assigned an id number that you can use), specify the cost in each supported territory / currency,
and add a name and description. Once those details are on our system, you can make calls to the SDK from
your game to query the items available, what the player has already purchased, etc.

The SDK provides the following request APIs:

GetItemsForPurchase — Get a list of all available purchasable items for this game.

GetPurchasedItems — Get a list of the items that the player has purchased.

PurchaseItem — Purchase the specified item.

GetPurchasedItemURL — Obtain the URL relating to the specified item.

The responses from the PlayJam service via the SDK will involve the following data:

id — A string representing the application purchase item id. This unique id is set up when you create
the purchasable item on the Publishing Portal.

name — The string name of the application purchase item.

description — A string description of the application purchase item.

cost — The cost of the purchase item, to the player (i.e., the amount in the local currency of the
territory where the player is located — we currently support Euros, US Dollars, and UK Pounds).

The data returned will be appropriate to the location of the player, so for example a player in the US will have a
wallet on the GameStick system which they can put funds into in US Dollars, and payments are then in US
Dollars — so the cost value returned by the SDK will be in Dollars, since the service knows where the player
is located, you don't have to do any currency conversion in-game.

There are a few complexities to handle, to do with what happens in certain situations such as, if the player
downloads a game, purchases some in-game items, removes the game, then later re-installs the game — in
this situation we need to ensure that the items the user previously purchased are also re-installed. The
PlayJam on-line service will remember the purchased items, so you don't have to keep track yourself, just
remember to query the service (via the SDK) and handle any that have been purchased but are not currently
installed.

The following flow diagram illustrates how the process should work:

GameStick SDK10

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

GameStick Standardization and UI Guidelines 11

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

So, each time your game starts, it should call the SDK to obtain the list of items that the player has already
purchased, then go through that list, and if any are not currently installed into your game, call the SDK again
to get a URL to the item data, then download that data and install it (this part is shown in gray in the diagram
above).

The lower part of the diagram illustrates the regular flow for purchasing an item in the game, and is fairly
straightforward. First call the SDK to obtain a list of purchasable items, display them to the player. If the
player buys an item, call the SDK to make the purchase, and if that worked without error, call the SDK again
to obtain the URL of the item data, then download (again, calling the appropriate download API with the URL
supplied) and then install the data. Your code should of course check that the purchase request was
successful (be sure to check for the service sending you a request failure response message — this could
happen for example if the player doesn't have sufficient funds in their wallet).

It is also possible that you could arrange for some or all purchasable items to be pre-installed as part of your
game and just need unlocking — in this situation the basic approach will be identical except that you will not
need to call the SDK to get a URL or to download the data, instead you would just need to do whatever is
necessary in your code to unlock the item.

2.3 Controller Guidelines

The GameStick controller is a HID compatible Bluetooth controller, with the following controls:

The GameStick controller

Below we list some simple rules about how we recommend you use these controls in your game, so that
players will see consistent behavior in different games and not become confused. We've listed the actual
codes that the controller will report back to the system in the Button Mappings topic which follows; you'll need
to review the Android documentation for details of how to implement these mappings in your code.

GameStick SDK12

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Menus

The A buttons should carry out select functions.

The B and BACK buttons should carry out back functions.

The START button is used to bring up menus. When pressed inside a game, the pause menu is
presented. When pressed anywhere else, it should bring up the main menu.

Analog sticks and D-pad can be used to control scrollable lists and menus.

Menu options should have roll over states, or button images graphically associated with them that
reflect which controller button is pressed to access the option.

When a menu that contains options has loaded, a selection border should surround one option by
default.

The Back button will bring up the exit confirmation menu when pressed in the main menu.

In-game

START button should be used to PAUSE game and bring up in-game menu or display items like help/
tutorial/control/maps

2.3.1 Button Mappings

The following table gives the mappings for the buttons on the standard GameStick controller and also the
Nyko Pro controller should you wish to support that. We've listed the Nvidia recommended codes also.

You may well find it worth your while to review the NVidia documentation on supporting Android game
controllers.

Buttons GameStick Controller
reports

Nvidia recommended
(Scancode)

Nyko Pro Controller

Dpad Up Axis_Hat_Y(-1.0) Axis_Hat_Y(-1.0) Axis_Hat_Y(-1.0)

Dpad Down Axis_Hat_Y(1.0) Axis_Hat_Y(1.0) Axis_Hat_Y(1.0)

Dpad Left Axis_Hat_X(-1.0) Axis_Hat_X(-1.0) Axis_Hat_X(-1.0)

Dpad Right Axis_Hat_X(1.0) Axis_Hat_X(1.0) Axis_Hat_X(1.0)

Button A Button A(0x130h)(304) Button A(0x130h)(304) Button A(0x130h)(304)

Button B Button B(0x131h)(305) Button B(0x131h)(305) Button B(0x131h)(305)

Button X Button X(0x133h)(307) Button X(0x133h)(307) Button X(0x133h)(307)

http://docs.nvidia.com/tegra/data/How_To_Support_Android_Game_Controllers.html
http://docs.nvidia.com/tegra/data/How_To_Support_Android_Game_Controllers.html

GameStick Standardization and UI Guidelines 13

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Button Y Button Y(0x134h)(308) Button Y(0x134h)(308) Button Y(0x134h)(308)

Left Shoulder (L1) Button L1(0x136h)(310) Button L1(0x136h)(310) Button L1(0x136h)(310)

Right Shoulder (R1) Button R1(0x137h)(311) Button R1(0x137h)(311) Button R1(0x137h)(311)

Button Back Button Back(0x9Eh)(158) Button Back(0x9Eh)(158) Button Back(0x9Eh)(158)

Button Home
Button Home(0xACh)(Can't
see Scancode))

Button Home(0xACh)(Can't
see Scancode))

Button Home(0xACh)(Can't
see Scancode))

Button Start Button Start(0x13Bh)(315) Button Start(0x13Bh)(315) Button Start(0x13Bh)(315)

Left joystick button
(L3)

Button Left Thumbl(0x13Dh)
(317)

Button Left Thumbl(0x13Dh)
(317)

Button Left Thumbl(0x13Dh)
(317)

Right joystick button
(R3)

Button Right Thumbl
(0x13Eh)(318)

Button Right Thumbl
(0x13Eh)(318)

Button Right Thumbl
(0x13Eh)(318)

Left joystick
Axis X(-1.0(L) to 1.0(R)) Axis X(-1.0(L) to 1.0(R)) Axis X(-1.0(L) to 1.0(R))

Axis Y(-1.0(U) to 1.0(D)) Axis Y(-1.0(U) to 1.0(D)) Axis Y(-1.0(U) to 1.0(D))

Right joystick
Axis Z(-1.0(L) to 1.0(R)) Axis Z(-1.0(L) to 1.0(R)) Axis Z(-1.0(L) to 1.0(R))

Axis RZ(-1.0(U) to 1.0(D)) Axis RZ(-1.0(U) to 1.0(D)) Axis RZ(-1.0(U) to 1.0(D))

Button L2(Brake)) No buttons on GameStick
controller

Axis Brake(0.0 to 1.0) Axis Brake(0.0 to 1.0)

Button LR2(Gas) Axis Gas(0.0 to 1.0) Axis Gas(0.0 to 1.0)

2.4 Adapting from Mobile or Tablet

If you are adapting your game from mobile or tablet, you'll have the following issues to address:

Things to remove:

Vibration

Accelerometer / gyroscope

Sensor based calibration

Touch based buttons that don't need to be on-screen due to the lack of touch controls

On the platform, for example the Pause icon in-game.

Things to replace:

GameStick SDK14

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Tutorials for the control mechanism

Links to the Google Play store must be removed OR changed to point to the GameStick store instead.

Select optimal resolution in 16:9 aspect ratio in proportion to average viewing distances for TV content
and performance of your game on the hardware (minimum resolution of 960x540)

Things to add:

Landscape mode support with full screen rendering at 16:9 aspect ratio. All portions of the screen must
be appropriately utilized.

Instructional text to use menus with the GameStick controller.

Note that touch and drag support can be retained by players using GameStick Companion App on their phone
or tablet to provide extra control to the game, but as not all players will with to do this, you should support the
standard game controller wherever possible.

2.5 GameStick Images

This page contains images of the GameStick controller for use by developers. These can be used within
games for example to display game controls.

If you have any queries about using these images please contact us.

Top view

GameStick Standardization and UI Guidelines 15

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Angle view

Slant view

GameStick SDK16

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Back view

Back slant view

Developer Setup Guide 17

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Section 3
Developer Setup Guide

Before you can get started, you'll first need to download the relevant SDK download pack for your project.

The following SDK downloads are available via the GameStick website:

Java
C++ / Marmalade
Unity

Note that everything you need to use the SDK from Unity is also provided via the Unity Asset Store.

The download pack will consist of a set of libraries (JAR files in the case of Java) which define the SDK
classes, and an Android Application Package (.apk) file containing the PlayJam service which needs to be
running on your system for you to make API calls.

You'll need to make sure your project includes the PlayJam libraries, and do some other simple project set-up
depending on your development environment, such as ensuring that the .apk containing the SDK is included in
your output project.

When you've built your project for Android, you should end up with an Android Application Package (.apk) file.
This will enable you to test install the application on a test GameStick device.

See the following articles for more details about getting set up for development on these platforms:

Java setup

Marmalade setup

Unity setup

3.1 Java

When you unpack the download you will see:

a folder sdk/services/java containing two .jar files which define two classes for you to use,
a folder debug/services containing two .apk files which you will need.

In Eclipse's project properties, click on the Add External JARs... button and point the project to the location of
the .jar file(s).

You should see the new libraries from the .jar files appear in your list of Libraries, like so:

GameStick SDK18

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Next, on the Order and Export tab, tick the new .jars to make sure they are included in your exported .apk
(it's also a good idea to move them to the top of the list, just in case). You need to do this so that your
exported application package contains the SDK libraries it needs to run.

In your code, you need to make sure the following libraries are imported so that you can use the GameStick
SDK classes:

 import com.playjam.gamestick.databaseinterfaceservice.*;

 import com.playjam.gamestick.downloadservice.*;

Then in your code, implement the IDownloadResponse and IJavaDatabaseInterfaceResponse classes:

 class DownloadResponse implement IDownloadResponse

 {

 ...

 }

Eclipse can automatically produce blank functions calls for all the things you need to implement (you must
have something for every method in the interface, even if empty / trivial, or you will get run time errors - use the
autocomplete function, or cut and paste from the example).

You'll also need to declare instances of the DownloadService class (which you don't need to implement as
it's defined in the .jar) and an instance of your newly implemented DownloadResponse class:

Developer Setup Guide 19

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 DownloadService m_download_service;

 DownloadResponse m_download_response;

Use the DownloadService class to call, for example:

 m_download_service.DownloadPackage(url);

 m_download_service.DownloadResource(url);

These are in fact the only two APIs in the DownloadService jar — the DataBaseInterfaceService.jar
contains many more APIs, but the principle is the same. See the API Reference for details of each of the
APIs.

Important Note:

in order to be able to be run your code on the device, you will also need to add the following line(s) to the
AndroidManifest.xml of your project:

 <uses-permission android:name="com.playjam.gamestick.permission.DATABASE_SERVICE"/>

 <uses-permission android:name="com.playjam.gamestick.permission.DOWNLOAD_SERVICE"/>

...depending on whether you are using the Database or Download service APIs (or both, which will be most
common).

For example:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.playjam.servicesamples"

 android:versionCode="1"

 android:versionName="1.0" >

<uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

<uses-permission android:name="com.playjam.gamestick.permission.DOWNLOAD_SERVICE"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.playjam.servicesamples.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

3.2 Marmalade

In the cpp folder you will see:

/lib/ - the C++ libraries needed (built for ARM)
/h/ - the C++ header files needed
DownloadService.mkf - Marmalade subproject for the DownloadService APIs

GameStick SDK20

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

DownloadService.jar - the Java classes needed for the DownloadService APIs
DatabaseInterfaceService.mkf - Marmalade subproject for the DatabaseInterfaceService APIs
DatabaseInterfaceService.jar - the java classes needed for the DatabaseInterfaceService APIs

To build with Marmalade and C++ we will assume you are using Visual Studio. Obviously in your project you
need to make sure it picks up the C++ libs and headers so you can build, so copy the /cpp folder hierarchy
from the download pack into somewhere handy for your project.

Then, make sure you add some lines to your application project's .mkb file:

subproject "C:/pathname/cpp/DownloadService"

subproject "C:/pathname/cpp/DatabaseInterfaceService"

before the following section:

subprojects

{

 ...

}

If you try and build at this point, Visual Studio will detect changes and display a dialog asking if you want to
reload your project; say yes. You should now see the subproject(s) as part of your Visual Studio project.

You will need to add the following lines to the top of your code to include the necessary C++ header files and
set the namespace:

#include "DatabaseInterface.h"

#include "DownloadServices.h"

using namespace PlayJam;

... and of course you will need to alter the additional include directories setting in your project to pick up the
header files.

You will then be able to specify:

DownloadResponse *response;

DownloadServiceInterface *service_interface;

DatabaseInterfaceResponse *db_response;

DatabaseInterfaceServiceInterface *db_interface;

you'll then need to implement a DownloadResponse class, based on the IDownloadResponse class:

DownloadResponse.h:

include <iostream>

include "DownloadServiceInterface.h"

using namespace PlayJam

class DownloadResponse ; public DownloadServiceInterface::IDownloadResponse

{

 public:

 DownloadResponse(void);

 ~DownloadResponse(void);

 virtual void DownloadProgress (const std::string &url, int progress);

 virtual void DownloadSuccess (const std::string &url, const std::string &destination);

 virtual void DownloadFailed (const std::string &url, const std::string &message);

};

Developer Setup Guide 21

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

These are the functions which will be called by the service to let your application know how the downloads are going:

DownloadProgress() - is called (several times) after you ask for a download, indicating current
progress (so you can implement a progress bar using this info).

DownloadSuccess() - is called at the end of the download if all is well - the string destination is a
message saying where the file went (place on the SD card on the stick, for example, e.g., /storage/
sdcard0/Download/dowbload-645679000.tmp — use this location to go grab the file in your
application.

DownloadFailed() - is called when the download fails (along with a suitable error message hopefully
telling you what went wrong): e.g., "Exception during download" - these messages are pretty standard
fare from java - what you do with this message is up to you.

Sending update requests:

It's important if you are using the download services to send an update message from time to time via:

service_interface->Update();

Probably the easiest thing to do is to call this from your main game loop so it updates once per frame.

Integrating support for DatabaseServices is largely the same process, though there are more APIs there—see
the API reference for details.

Lastly, remember also to ensure that the SDK libraries are included in your .apk build target so that the
finished project will be able to make API calls when running on the GameStick.

3.3 Unity

The Unity package contains everything you need including scripts that provide functions you can call from
your Unity project, and Unity-specific versions of the necessary JAR files.

Android Manifest Permissions

In one or both of Unity's AndroidManifest.xml templates found at...

\Unity\Editor\Data\PlaybackEngines\androiddevelopmentplayer\AndroidManifest.xml

\Unity\Editor\Data\PlaybackEngines\androidplayer\AndroidManifest.xml

...place the following permissions (you can put them just after the opening <manifest> tag:

<uses-permission android:name="com.playjam.gamestick.permission.DOWNLOAD_SERVICE" />

<uses-permission android:name="com.playjam.gamestick.permission.DATABASE_INTERFACE_SERVICE" />

...without these, service calls with fail (leaving a suitable message in the ADB log).

Do not forget to remove these for other projects. Probably the easiest way is to make copies of the original
template manifests before making modifications. That way you can easily switch back and forth between
these if you are working on several different Unity projects, GameStick and non-GameStick. You will likely
need to set the permissions on these folders in order to make the above modifications, at least under

GameStick SDK22

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Windows.

Runtime Dependencies

Certain JAR files are required to supply Unity with the ability to make service calls. These should be placed in
your project under /Assets/Plugins/Android.

Mandatory (SDK service providers):

unitydatabaseinterfaceservice.jar

unitydownloadservice.jar

Optional (for troubleshooting basic Unity<->JVM interop):

 unitytestjni.jar

Code

The project consists of the scene containing GameObjects, finalised service classes and sample
implementation classes.

Scene:

Open the scene and examine the ExampleServiceRequests and ExampleServiceResponseHandler objects.
Their names don't matter; nor do the names of the scripts attached; however the scripts themselves do.

Services:

PlayJamServices encapsulates Unity->Java service calls, giving access to all SDK services.

The abstract class ServiceResponseHandler must be implemented to allow callbacks to the
appropriate method, Java->Unity. This should then be attached to a GameObject (see also below).

PlayJamServices.SetResponseHandler(name) allows service callbacks to be made to the chosen
object, Java->Unity.

The above two points offer flexibility in placing the service response handlers anywhere in your
implementation.

Example implementations:

ExampleServiceResponseHandler.cs implements the aforementioned interfaces. At this point there
is no parsing of the data returned from the service (which will be some JSON).

ExampleServiceRequests.cs implementats a screen full of buttons, each of which makes a different
service call via PlayJamServices, and response text fields (one for download services, one for
database services) to see the results of each button press. Where arguments are required for service
calls, dummy arguments have been hardcoded for a simple demonstration.

TestJNI method is used to ascertain whether the simplest of the three JARs, unitytestjni.jar, is

Developer Setup Guide 23

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

communicating using the basic mechanism used by the service JARs.

To ensure everything works, be sure you have called PlayJamServices.SetResponseHandler
("<YourGameObjectName>"), where <YourGameObjectName> is the name of the object on which your
response handler script is placed; in the example provided, this name is "ExampleServiceResponseHandler"
which refers to the object with that name in the scene.

Cleanup should always be done at app exit by calling PlayJamServices.Dispose(), or the Java objects /
classes will likely not be cleared from the heap.

24 GameStick SDK

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

API Reference 25

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Section 4
API Reference

Reference information for the classes in the SDK is provided for Java, C++ and Unity bindings.

Java reference

C++ reference

Unity reference

4.1 Java API

The following document outlines all the API functions in the Java version of the SDK.

Bear in mind the overall structure of the SDK is that you send messages, via API calls, to a service running on
the stick that will use the internet to make a request to the PlayJam server. The responses are then sent by
the server and picked up by the service running on the stick. In order to receive the response, you need to
implement listening objects in your code, and to do this you use additional classes provided in the SDK.

The data returned via the internet is actually in a JSON form, but as a Java developer you don't need to worry
about this — we've provided classes to encapsulate and parse the relevant information. For example, the
Achievements class provides methods to get the name or ID of an achievement, or to iterate to the next
achievement, and so on. So you really don't have to concern yourself with the actual structure of the data, or
how it is sent and received by the on-line service — all you need to do is implement the provided classes,
make API calls to send messages, and use the data returned.

The following packages are of interest:

DatabaseInterfaceService

This package provides access to the on-line database via the following classes:

DatabaseInterfaceService Defines the API calls you use to send messages to the service.

IJavaDatabaseInterfaceResp

onse
Interface which you need to implement in order to receive
responses back from the database service.

Achievements Class which encapsulates achievement data passed back to you.

AppItems Class which encapsulates the app items data passed back to you.

LeaderboardData Class which encapsulates leader board data passed back to you.

GameStick SDK26

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

DownloadServiceInterface

This package provides access to the download services via the following classes:

DownloadServiceInterface Defines the API calls you use to send messages to the download
service.

IDownloadResponse Interface which you need to implement in order to receive
responses back from the download service.

4.1.1 DatabaseInterfaceService

The DatabaseInterfaceService class provides APIs enabling you to make requests relating to each of the
following parts of the PlayJam On-line Services:

Leader board APIs

DatabaseInterfaceService.LeaderBoard_GetTop50();

DatabaseInterfaceService.LeaderBoard_GetRange(int from, int to);

DatabaseInterfaceService.LeaderBoard_SaveScore(int score);

DatabaseInterfaceService.LeaderBoard_GetNearest(unsigned range,

 bool sort_ascending);

Save / load game state APIs

DatabaseInterfaceService.Game_SaveState(byte [] data);

DatabaseInterfaceService.Game_LoadState();

Achievements APIs

DatabaseInterfaceService.Achievement_GetAllAchievements();

DatabaseInterfaceService.Achievement_SetAchievmentComplete(String id);

Analytics APIs

DatabaseInterfaceService.Analytics_GameEvent(String hashmap);

In app purchasing APIs

DatabaseInterfaceService.InAppPurchase_GetPurchasedItems();

DatabaseInterfaceService.InAppPurchase_GetItemsForPurchase();

DatabaseInterfaceService.InAppPurchase_PurchaseItem(String item_id);

DatabaseInterfaceService.InAppPurchase_GetPurchasedItemURL(String item_id);

Note that in all cases, the actual API functions do not have a return value - the service will issue responses
which may contain returned data, and you need to implement the
IJavaDatabaseInterfaceResponse interface to handle these responses. For each call, the service call either

API Reference 27

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

the appropriate response handler (which we indicate below for each call) or if something went wrong,
DatabaseRequestFailed.

Before you can make any SDK calls you will need to create your DatabaseInterfaceService object and
associate it with your response handler, which you do by passing your handler to the
DatabaseInterfaceService constructor like so:

 m_database_response = new JavaDatabaseInterfaceResponse();

 m_database_service = new DatabaseInterfaceService(this, m_database_response);

4.1.1.1 Leaderboard APIs

These APIs issue requests to the leader board service. Remember you will have to implement the
IJavaDatabaseInterfaceResponse interface to handle the responses from the service. The name of the
response call-back corresponding to each call is listed below.

DatabaseInterfaceService.LeaderBoard_GetTop50()

Description

Create a request to get top 50 leader-board entries.

Parameters

None.

Response

LeaderBoard_GetTop50_Response (LeaderboardData data);

The data returned to your response handler will be a list of leader board entries which you can iterate through
and access information about — see the LeaderboardData class reference page.

DatabaseInterfaceService.LeaderBoard_GetRange(int from, int to)

Description

Create a request to get a set of leader-board entries.

Parameters

int from
The highest ranking entry on the
leader-board you want to get (1

GameStick SDK28

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

being the top ranked entry).

Response

LeaderBoard_GetRange_Response (LeaderboardData data);

The data returned to your response handler will be a list of leader board entries which you can iterate through
and access information about — see the LeaderboardData class reference page.

DatabaseInterfaceService.LeaderBoard_SaveScore(int score)

Description

Create a request to set a leader-board entry.

Parameters

int score
The score to save into the leader-
board.

Response

LeaderBoard_SaveScore_Response ();

The response will not include any data, the response call simply confirms that your request to save the score
was successful.

DatabaseInterfaceService.LeaderBoard_GetNearest(int range, boolean sort_ascending)

Description

Create a request to get a set of leader-board entries near to the current score (i.e., the last score saved with
DatabaseInterfaceService.LeaderBoard_SaveScore).

Parameters

int range

The size of the range of nearby
values - for example if you want the
5 leaders above and 5 below the
last score saved, specify 5 here.

boolean sort_ascending
Specify the order of the sorted
entries to be returned.

Response

LeaderBoard_GetNearest_Response (LeaderboardData data);

API Reference 29

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

The data returned to your response handler will be a list of leader board entries which you can iterate through
and access information about — see the LeaderboardData class reference page.

4.1.1.2 Save State APIs

These APIs issue requests to the Save State module of the service. Remember you will have to implement
the IJavaDatabaseInterfaceResponse interface to handle any responses from the service.

DatabaseInterfaceService.Game_SaveState(byte [] data)

Description

Create a request to save the current game state.

Parameters

byte [] data
Your data (which should be stored
as an array of byte/char data).

Response

Game_SaveState_Response ();

DatabaseInterfaceService.Game_LoadState()

Description

Create a request to load the previously saved game state.

Parameters

None.

Response

Game_LoadState_Response (InputStream data);

4.1.1.3 Achievements APIs

These APIs issue requests to the Achievements module of the service. Remember you will have to implement
the IJavaDatabaseInterfaceResponse interface to handle any responses from the service.

DatabaseInterfaceService.Achievement_GetAllAchievements()

GameStick SDK30

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Description

Create a request to get all game achievements. The data passed back to you via your
IJavaDatabaseInterfaceService response handler will contain a list of achievements which you can easily
access using the Achievements class.

Parameters

None.

Response

Achievement_GetAllAchievements_Response (Achievements data);

DatabaseInterfaceService.Achievement_SetAchievmentComplete(String id)

Description

Create a request to set an achievement as completed.

Parameters

String id
String representing the achievement
id.

Response

Achievement_SetAchievementComplete_Response ();

4.1.1.4 Analytics APIs

These APIs relate to storing data to do with game events.

The service will save the data on the PlayJam server, so you can use this API to store any arbitrary data to do
with events during the game which you want to track - for example, you can store something every time a
player performs a certain action (reads the instructions, quits a game, or whatever) so you can use this data
later to help analyse how people interact with your game.

Remember you will have to implement the IJavaDatabaseInterfaceResponse interface to handle any
responses from the service.

DatabaseInterfaceService.Analytics_GameEvent(Map <String, String> hashmap)

Description

Create a request to set a game event.

API Reference 31

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Parameters

Map <String, String> hashmap
A set of key-value paired strings
representing the game event data.

Response

Analytics_GameEvent_Response ();

No data is returned to the response handler for this request, the response just indicates that the request was
received.

4.1.1.5 In-app purchasing APIs

These APIs issue requests to the in-app purchasing module of the service. Remember you will have to
implement the IJavaDatabaseInterfaceResponse interface to handle any responses from the service. Data
passed back to your response handler is parsed for you by the AppItems class.

The In-App Purchasing Guidelines topic explains what you need to do to support purchasing in more detail.

DatabaseInterfaceService.InAppPurchase_GetPurchasedItems()

Description

Create a request to get all purchased items.

Parameters

None.

Response

InAppPurchase_GetPurchasedItems_Response (AppItems data);

The data returned will be a list of all the purchased items, which you can iterate through and access
information about — see the AppItems class reference page.

DatabaseInterfaceService.InAppPurchase_GetItemsForPurchase()

Description

Create a request to get all items available for purchase.

Parameters

None.

Response

GameStick SDK32

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

InAppPurchase_GetItemsForPurchase_Response (AppItems data);

The data returned will be a list of all the available items, which you can iterate through and access information
about — see the AppItems class reference page.

DatabaseInterfaceService.InAppPurchase_PurchaseItem(String item_id)

Description

Create a request to purchase an item.

Parameters

String item_id
String value representing the item
id.

Response

InAppPurchase_PurchaseItem_Response (boolean bought);

The boolean value passed back to your response handler will indicate whether the purchase request was
successful.

DatabaseInterfaceService.InAppPurchase_GetPurchasedItemURL(String item_id)

Description

Request the URL of the purchased item.

Parameters

String item_id
String value representing the item
id.

Response

InAppPurchase_GetPurchasedItemURL_Response (String url);

4.1.2 IJavaDatabaseInterfaceResponse

This interface class provides the methods needed to receive messages back from the service. You need to
implement your own object that uses this interface and provides something for each of the following methods:

 void LeaderBoard_GetTop50_Response (LeaderboardData data);

 void LeaderBoard_GetRange_Response (LeaderboardData data);

 void LeaderBoard_GetNearest_Response (LeaderboardData data);

API Reference 33

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 void LeaderBoard_SaveScore_Response ();

 void Game_SaveState_Response ();

 void Game_LoadState_Response (InputStream data);

 void Achievement_GetAllAchievements_Response (Achievements data);

 void Achievement_SetAchievementComplete_Response ();

 void Analytics_GameEvent_Response ();

 void InAppPurchase_GetPurchasedItems_Response (AppItems data);

 void InAppPurchase_GetItemsForPurchase_Response (AppItems data);

 void InAppPurchase_PurchaseItem_Response (boolean bought);

 void InAppPurchase_GetPurchasedItemURL_Response (String url);

 void DatabaseRequestFailed (Request id, String message);

The service will then call your implementations of these methods in order to send information back to your
application. Note that the data is often passed via objects such as Achievements, AppItems and
LeaderboardData which we have provided to help with parsing the information.

Error handling

You will need to implement DatabaseRequestFailed() in order to listen out for messages back from the
service telling you which request did not work (a string is also returned containing an error message). The id of
the request is returned via the Request type which is an enum defined as follows:

enum Request

{

 LeaderBoard_GetTop50,

 LeaderBoard_GetRange,

 LeaderBoard_GetNearest,

 LeaderBoard_SaveScore,

 Game_SaveState,

 Game_LoadState,

 Achievement_GetAllAchievements,

 Achievement_SetAchievementComplete,

 Analytics_GameEvent,

 InAppPurchase_GetPurchasedItems,

 InAppPurchase_GetItemsForPurchase,

 InAppPurchase_PurchaseItem,

 InAppPurchase_GetPurchasedItemURL,

 NumberOfRequests

};

Example

The following very basic code example shows how you might implement the
IJavaDatabaseInterfaceResponse interface and provide handlers for all the call-backs. Naturally in your own
code you will eventually need to do something more complex...

import com.playjam.gamestick.databaseinterfaceservice.*;

GameStick SDK34

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

public class JavaDatabaseInterfaceResponse implements IJavaDatabaseInterfaceResponse

{

 @Override

 public void Achievement_GetAllAchievements_Response(Achievements achievements)

 {

 for (Iterator iterator = achievements.GetItems().iterator(); iterator.hasNext();)

 {

 Item item = (Item) iterator.next();

 Log.d("GameStick", "ID :" + Integer.toString(item.ID()));

 Log.d("GameStick", "Name : " + item.Name());

 Log.d("GameStick", "Description : " + item.Description());

 Log.d("GameStick", "Type : " + item.Type());

 Log.d("GameStick", "fileName : " + item.FileName());

 Log.d("GameStick", "file URL : " + item.FileURL());

 Log.d("GameStick", "Completed : " + Boolean.toString(item.isCurrentUserOwner()));

 Log.d("GameStick", "XP Value : " + Integer.toString(item.XPValue()));

 }

 }

 @Override

 public void Achievement_SetAchievementComplete_Response()

 {

 Log.d("GameStick", "Set achievement complete");

 }

 @Override

 public void Analytics_GameEvent_Response()

 {

 Log.d("GameStick", "Analytics response");

 }

 @Override

 public void DatabaseRequestFailed(DatabaseInterfaceService.Request request, String message)

 {

 Log.d("GameStick", "Error : " + message);

 }

 @Override

 public void Game_LoadState_Response(InputStream input)

 {

 Log.d("GameStick", "Loading data");

 java.util.Scanner s = new java.util.Scanner(input).useDelimiter("\\A");

 String result = s.next();

 Log.d("GameStick","Converted data : " + result);

 }

 @Override

 public void Game_SaveState_Response()

 {

 Log.d("GameStick", "Saving");

 }

 @Override

 public void InAppPurchase_GetItemsForPurchase_Response(AppItems items)

 {

 for (Iterator iterator = items.GetItems().iterator(); iterator.hasNext();)

 {

 AppItems.Item item = (AppItems.Item) iterator.next();

 Log.d("GameStick", items.toString());

 }

 }

API Reference 35

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 @Override

 public void InAppPurchase_GetPurchasedItemURL_Response(String url)

 {

 Log.d("GameStick", "Purchased item url : " + url);

 }

 @Override

 public void InAppPurchase_GetPurchasedItems_Response(AppItems items)

 {

 for (Iterator iterator = items.GetItems().iterator(); iterator.hasNext();)

 {

 AppItems.Item item = (AppItems.Item) iterator.next();

 Log.d("GameStick", items.toString());

 }

 }

 @Override

 public void InAppPurchase_PurchaseItem_Response(boolean response)

 {

 Log.d("GameStick", "Purchase response : " + response);

 }

 @Override

 public void LeaderBoard_GetNearest_Response(LeaderboardData data)

 {

 for (Iterator iterator = data.GetEntries().iterator(); iterator.hasNext();)

 {

 Entry item = (Entry) iterator.next();

 Log.d("GameStick", Integer.toString(item.AvatarID()));

 Log.d("GameStick", item.Name());

 Log.d("GameStick", Integer.toString(item.Score()));

 Log.d("GameStick", Integer.toString(item.Position()));

 }

 }

 @Override

 public void LeaderBoard_GetRange_Response(LeaderboardData data)

 {

 for (Iterator iterator = data.GetEntries().iterator(); iterator.hasNext();)

 {

 Entry item = (Entry) iterator.next();

 Log.d("GameStick", Integer.toString(item.AvatarID()));

 Log.d("GameStick", item.Name());

 Log.d("GameStick", Integer.toString(item.Score()));

 Log.d("GameStick", Integer.toString(item.Position()));

 }

 }

 @Override

 public void LeaderBoard_GetTop50_Response(LeaderboardData data)

 {

 for (Iterator iterator = data.GetEntries().iterator(); iterator.hasNext();)

 {

 Entry item = (Entry) iterator.next();

 Log.d("GameStick", Integer.toString(item.AvatarID()));

 Log.d("GameStick", item.Name());

 Log.d("GameStick", Integer.toString(item.Score()));

 Log.d("GameStick", Integer.toString(item.Position()));

 }

 }

 @Override

 public void LeaderBoard_SaveScore_Response()

 {

 Log.d("GameStick", "Save Score Response");

GameStick SDK36

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 }

}

4.1.3 Achievements

This object wraps the data for achievements that will be returned by the service via the
IJavaDatabaseInterfaceClass interface you implemented for:

Achievement_GetAllAchievements_Response (Achievements data);

Note that an Achievements object is returned as a result of the
DatabaseInterfaceService.Achievement_GetAllAchievements() API call. It won't come as a surprise to
you then, that the object encodes a list of achievements (actually returned via the service as some JSON, but
parsed for your convenience by this class).

GetItems — The GetItems method is used to access the items in the object.

Item — this represents a particular item in the Achievement data (i.e., a single element from the list of
achievements).

ID — (int) The achievement id number (allocated when the achievement was defined via the PlayJam
Publishing Portal).

Name — (String) Name of the achievement.

Description — (String) Description of the achievement.

Type — (String) The achievement type.

FileName — (String) The filename of some data associated with the achievement, passed back by the
service.

FileURL — (String) The URL of some data associated with the achievement.

isCurrentUserOwner — (boolean) Indicates whether the achievement was completed by the current
user. This will therefore be true for those achievements that you have set to be complete using
DatabaseInterfaceService.Achievement_SetAchievmentComplete.

XPValue — (int) The number of experience points to be granted to the player for completing the
achievement.

Example

The following very simple example shows how to implement IJavaDatabaseInterfaceResponse to provide
your response handling class, override the get all achievements response, and iterate through the data
returned (here we just write the data out to the log, of course you will want to do something more intelligent

API Reference 37

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

and useful...).

public class JavaDatabaseInterfaceResponse implements IJavaDatabaseInterfaceResponse

{

 ...

 @Override

 public void Achievement_GetAllAchievements_Response(Achievements achievements)

 {

 for (Iterator iterator = achievements.GetItems().iterator(); iterator.hasNext();)

 {

 Item item = (Item) iterator.next();

 Log.d("GameStick", "ID :" + Integer.toString(item.ID()));

 Log.d("GameStick", "Name : " + item.Name());

 Log.d("GameStick", "Description : " + item.Description());

 Log.d("GameStick", "Type : " + item.Type());

 Log.d("GameStick", "fileName : " + item.FileName());

 Log.d("GameStick", "file URL : " + item.FileURL());

 Log.d("GameStick", "Completed : " + Boolean.toString(item.isCurrentUserOwner()));

 Log.d("GameStick", "XP Value : " + Integer.toString(item.XPValue()));

 }

 }

 ...

}

4.1.4 AppItems

This object wraps the data for application items that will be returned by the service via the
IJavaDatabaseInterfaceClass interface you implemented for:

 void InAppPurchase_GetPurchasedItems_Response (AppItems data);

 void InAppPurchase_GetItemsForPurchase_Response (AppItems data);

In other words this class is used to represent in-app purchase items you might have defined and which can be
returned via the service in response to API calls.

GetItems — The GetItems method is used to access the items in the object.

Item — this represents a particular item in the AppItems data (i.e., a single element from the list of
application purchase items).

ID — (String) The application application purchase item id.

Name — (String) Name of the application purchase item.

Description — (String) Description of the application purchase item.

Cost — (String) The cost of the purchase item.

GameStick SDK38

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Example

The following very simple example shows how to implement IJavaDatabaseInterfaceResponse to provide
your response handling class, override the achievements response call, and iterate through the achievements
data returned (here we just write the data out to the log, of course you will want to do something more
interesting).

public class JavaDatabaseInterfaceResponse implements IJavaDatabaseInterfaceResponse

{

 ...

 @Override

 public void InAppPurchase_GetItemsForPurchase_Response(AppItems items)

 {

 for (Iterator iterator = items.GetItems().iterator(); iterator.hasNext();)

 {

 AppItems.Item item = (AppItems.Item) iterator.next();

 Log.d("GameStick", items.toString());

 }

 }

 ...

}

4.1.5 LeaderboardData

This object wraps the data for leader boards that will be returned by the service via the
IJavaDatabaseInterfaceClass interface you implemented for:

 void LeaderBoard_GetTop50_Response (LeaderboardData data);

 void LeaderBoard_GetRange_Response (LeaderboardData data);

 void LeaderBoard_GetNearest_Response (LeaderboardData data);

In each case the value returned as LeaderboardData represents a list of items from the leader board (i.e., a
list of leader board entries). We provide accessors for parsing the entries to get the name, score, avatar id,
and position of each list entry without you having to parse the data yourself (which as always is actually
returned as some JSON behind the scenes).

GetItems — The GetItems method is used to access the items in the object.

Item — this represents a particular item in the leader board data (i.e., a single element from the list of leader
board entries returned).

Name — (String) The player's name.

Score — (int) The score.

API Reference 39

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

AvatarID — (int) The id of the player's avatar.

Position — (int) The current position on the leader board of that score.

Example

The following very simple example shows how to implement IJavaDatabaseInterfaceResponse to provide
your response handling class, override the leader board get top 50 response, and iterate through the data
returned (here we just write the data out to the log, of course you will want to do something more intelligent
and useful...).

public class JavaDatabaseInterfaceResponse implements IJavaDatabaseInterfaceResponse

{

 ...

 @Override

 public void LeaderBoard_GetTop50_Response(LeaderboardData data)

 {

 for (Iterator iterator = data.GetEntries().iterator(); iterator.hasNext();)

 {

 Log.d("GameStick", "item");

 Entry item = (Entry) iterator.next();

 Log.d("GameStick", item.Name());

 Log.d("GameStick", Integer.toString(item.Score()));

 Log.d("GameStick", Integer.toString(item.AvatarID()));

 Log.d("GameStick", Integer.toString(item.Position()));

 }

 }

 ...

}

4.1.6 DownloadServiceInterface

The download services group of APIs issue requests to the downloads module of the service. Remember you
will have to implement the IDownloadResponse class to handle the responses.

DownloadServiceInterface.DownloadPackage(String url);

DownloadServiceInterface.DownloadResource(String url);

Before you can make any SDK calls you will need to create your DownloadServiceInterface object and
associate it with your response handler, which you do by passing your handler to the
DownloadServiceInterface constructor like so:

 m_download_response = new DownloadResponse();

GameStick SDK40

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 m_download_service = new DownloadService(this, m_download_response);

DownloadServiceInterface.DownloadPackage(String url)

Description

Requests a package (or large file) download from a server. Progress messages are sent during download. This
can be used for larger files such as game levels and has higher priority.

Note that if you make multiple requests to DownloadPackage(), the packages will be returned from the
service in FIFO (first-in first-out) order, i.e., the packages are returned in the order you requested them.

Parameters

String url The file to be downloaded.

Response

One of:

DownloadSuccess (String url, String destination);

DownloadFailed (String url, String message);

DownloadServiceInterface.DownloadResource(String url)

Description

Create a request to download a file. This is intended for smaller, lower priority files and doesn't issue progress
report messages.

Note that if you make multiple requests to DownloadResource(), the files will be returned from the service in
FILO (first-in last-out) order, i.e., the most recent request will be downloaded first. This means for example
that when you draw a screen full of graphics the last graphic requested will be sent first.

Parameters

String url The file to be downloaded.

Response

One of:

DownloadSuccess (String url, String destination);

DownloadFailed (String url, String message);

API Reference 41

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

4.1.7 IDownloadResponse

This interface class provides the methods needed to receive messages back from the download service. You
need to implement your own object that uses this interface and provides something for each of the following
methods:

 void DownloadProgress (String url, int progress);

 void DownloadSuccess (String url, String destination);

 void DownloadFailed (String url, String message);

DownloadProgress(String url, int progress)

Description

Will be called by the service when a download progress callback occurs.

Parameters

String url The file being downloaded.

int progress
The amount downloaded so far as a
percentage.

Return

None.

DownloadSuccess(String url, String destination)

Description

Will be called when a download success callback occurs. The information passed to you in the parameters
tell you the name of the file (a file you requested earlier via DownloadServiceInterface.DownloadPackage or
DownloadServiceInterface.Resource) and the location on the stick in which the file is (temporarily)
located.

Note that the file will be removed from the stick when the call to this method ends, so you will need to read
the contents or copy it to where you need it in your DownloadSuccess method.

Parameters

String url The file being downloaded.

String destination The temporary local location of the

GameStick SDK42

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

downloaded file.

Return

None.

DownloadFailed(String url, String message)

Description

Will be called when a download failed callback occurs. The information passed to you in the parameters tell
you the name of the file (a file you requested earlier via DownloadServiceInterface.DownloadPackage or
DownloadServiceInterface.Resource) and an error message indicating what went wrong.

Parameters

String url The file being downloaded.

String message The error message.

Return

None.

Example

The following very basic code example shows how you might implement the IDownloadResponse interface
and provide handlers for DownloadFailed, DownloadSuccess, and DownloadProgress. Naturally in your own
code you will eventually need to do something more complex.

import com.playjam.gamestick.downloadservice.DownloadService;

import com.playjam.gamestick.downloadservice.DownloadService.IDownloadResponse;

class DownloadResponse implements IDownloadResponse

{

 @Override

 public void DownloadFailed(String url, String success) {

 Log.d("PLAYJAM", "Failed : " + url + " value " + success);

 // you could display an appropriate message to the user here

 }

 @Override

 public void DownloadProgress(String url, int progress)

 {

 Log.d("PLAYJAM", "Progress : " + url + " value " + progress);

API Reference 43

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 // you could add code to provide a progress bar here

 }

 @Override

 public void DownloadSuccess(String url, String destination)

 {

 Log.d("PLAYJAM", "Success : " + url + " value " + destination);

 // insert code here to copy the file somewhere safe if needed later

 }

}

4.2 C++ API

The following document outlines all the API functions in the C++ version of the SDK.

Bear in mind the overall structure of the SDK is that you send messages, via API calls, to a service running on
the stick that will use the internet to make a request to the PlayJam server. The responses are then sent by
the server and picked up by the service running on the stick. In order to receive the response, you need to
implement listening objects in your code, and to do this you use additional classes provided in the SDK.

The data returned via the internet is actually in a JSON form, but as a C++ developer you don't need to worry
about this — we've provided classes to encapsulate and parse the relevant information. For example, the
Achievements class provides methods to get the name or ID of an achievement, or to iterate to the next
achievement, and so on. So you really don't have to concern yourself with the actual structure of the data, or
how it is sent and received by the on-line service — all you need to do is implement the provided classes,
make API calls to send messages, and use the data returned.

The following .h files are of interest:

DatabaseInterfaceService.h

Classes defined here provide access to the on-line database:

DatabaseInterfaceServiceInt

erface
Defines the API calls you use to send messages to the service.

IRequestResponse Interface which you need to implement in order to receive
responses back from the database service.

Achievements Class which encapsulates achievement data passed back to you.

AppItems Class which encapsulates the app items data passed back to
you.

LeaderboardData Class which encapsulates leader board data passed back to you.

DownloadService.h

Classes defined here provide access to the download services:

GameStick SDK44

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

DownloadServiceInterface Defines the API calls you use to send messages to the download
service.

IDownloadResponse Interface which you need to implement in order to receive
responses back from the download service.

4.2.1 DatabaseInterfaceServiceInterface

The Database services group actually provides APIs relating to each of the following parts of the PlayJam On-
line Services:

Leader board APIs

DatabaseInterfaceServiceInterface::LeaderBoard_GetTop50();

DatabaseInterfaceServiceInterface::LeaderBoard_GetRange (unsigned from,

 unsigned to);

DatabaseInterfaceServiceInterface::LeaderBoard_SaveScore(unsigned score);

DatabaseInterfaceServiceInterface::LeaderBoard_GetNearest (unsigned range,

 bool sort_ascending);

Save / load game state APIs

DatabaseInterfaceServiceInterface::Game_SaveState(unsigned char *data,

 size_t size);

DatabaseInterfaceServiceInterface::Game_LoadState();

Achievements APIs

DatabaseInterfaceServiceInterface::Achievement_GetAllAchievements();

DatabaseInterfaceServiceInterface::Achievement_SetAchievementComplete(

 const std::string

 &achievement_id);

Analytics APIs

DatabaseInterfaceServiceInterface::Analytics_GameEvent(const EventData

 &event_data);

In app purchasing APIs

DatabaseInterfaceServiceInterface::InAppPurchase_GetPurchasedItems();

DatabaseInterfaceServiceInterface::InAppPurchase_GetItemsForPurchase();

API Reference 45

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

DatabaseInterfaceServiceInterface::InAppPurchase_PurchaseItem(

 const std::string &item_id);

DatabaseInterfaceServiceInterface::InAppPurchase_GetPurchasedItemURL(

 const std::string &item_id);

General APIs

DatabaseInterfaceServiceInterface::Update ();

Before you can make any database service SDK calls you will need to create your
DatabaseInterfaceServiceInterface object and associate it with your response handler object, which you
do by passing your handler to the DatabaseInterfaceServiceInterface constructor like so:

 database_response = new RequestResponse();

 database_interface = DatabaseInterfaceServiceInterface::Create(database_response);

General APIs

These APIs are to do with making sure your application and the service on the stick are communicating
properly.

DatabaseInterfaceServiceInterface::Update()

Description

C++ users of the SDK need to call this update function periodically, in order to prompt the service to flush and
send any pending messages back to you. Technically you only need to do this when you might be expecting
a message (in response to a request you have made of the service via an API call); in practice, it is simplest
and safest to simply call DatabaseInterfaceService::Update() regularly, for example once a frame from
your main game loop.

Note that it is very important that you call this update function from the same thread that you created your
DatabaseInterfaceServiceInterface object via the class constructor.

Parameters

None.

Response

None.

GameStick SDK46

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

4.2.1.1 Leaderboard APIs

These APIs issue requests to the leader board service. Remember you will have to override the
IRequestResponse class to handle the responses from the service.

DatabaseInterfaceServiceInterface::LeaderBoard_GetTop50()

Description

Create a request to get top 50 leader-board entries.

Parameters

None.

Response

LeaderBoard_GetTop50_Response (const LeaderboardData &data);

The data returned to your response handler will be a list of leader board entries which you can iterate through
and access information about — see the LeaderboardData class reference page.

DatabaseInterfaceServiceInterface::LeaderBoard_GetRange(unsigned from, unsigned to)

Description

Create a request to get a set of leader-board entries.

Parameters

unsigned from
The highest ranking entry on the
leader-board you want to get (1
being the top ranked entry).

Response

LeaderBoard_GetRange_Response (const LeaderboardData &data);

The data returned to your response handler will be a list of leader board entries which you can iterate through
and access information about — see the LeaderboardData class reference page.

DatabaseInterfaceServiceInterface::LeaderBoard_SaveScore(unsigned score)

Description

Create a request to set a leader-board entry.

API Reference 47

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Parameters

unsigned score
The score to save into the leader-
board.

Response

LeaderBoard_SaveScore_Response ();

The response will not include any data, the response call simply confirms that your request to save the score
was successful.

DatabaseInterfaceServiceInterface::LeaderBoard_GetNearest(unsigned range, bool
sort_ascending)

Description

Create a request to get a set of leader-board entries near to the current score (i.e., the last score saved with
LeaderBoard_SaveScore).

Parameters

unsigned range

The size of the range of nearby
values - for example if you want the
5 leaders above and 5 below the
last score saved, specify 5 here.

bool sort_ascending
Specify the order of the sorted
entries to be returned.

Response

LeaderBoard_GetNearest_Response (const LeaderboardData &data);

The data returned to your response handler will be a list of leader board entries which you can iterate through
and access information about — see the LeaderboardData class reference page.

4.2.1.2 Save State APIs

These APIs issue requests to the Save State module of the service. Remember you will have to override
the IRequestResponse class to handle any responses from the service.

DatabaseInterfaceServiceInterface::Game_SaveState(unsigned char *data, size_t size)

Description

Create a request to save the current game state data.

GameStick SDK48

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Parameters

unsigned char *data
Pointer to your data (which should
be stored as an array of byte/char
data).

Response

Game_SaveState_Response ();

DatabaseInterfaceServiceInterface::Game_LoadState()

Description

Create a request to load the previously saved game state.

Parameters

None.

Response

Game_LoadState_Response (const unsigned char *data, size_t size);

4.2.1.3 Achievements APIs

These APIs issue requests to the Achievements module of the service. Remember you will have to override
the IRequestResponse class to handle any responses from the service.

DatabaseInterfaceServiceInterface::AchievementGetAllAchievements()

Description

Create a request to get all game achievements.

Parameters

None.

Response

Achievement_GetAllAchievements_Response (const Achievements &data);

DatabaseInterfaceServiceInterface::SetAchievementComplete(const std::string &achievement_id)

API Reference 49

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Description

Create a request to set an achievement as completed.

Parameters

const std::string &achievement_id
 String representing the
achievement id.

Response

Achievement_SetAchievementComplete_Response ();

4.2.1.4 Analytics APIs

These APIs relate to storing data to do with game events.

DatabaseInterfaceServiceInterface::Analytics_GameEvent(const EventData &event_data)

Description

Create a request to set a game event. The service will save the data on the PlayJam server, so you can use
this API to store any arbitrary data to do with events during the game which you want to track — for example,
you can store something every time a player performs a certain action (reads the instructions, quits a game,
or whatever) so you can use this data later to help analyse how people interact with your game.

Parameters

const EventData &event_data
A set of key-value paired strings
representing the game event data.

Note that const EventData is defined in DatabaseInterfaceServiceInterface.h as follows:

typedef std::pair <std::string, std::string> EventDataItem;

typedef std::vector <EventDataItem> EventData;

This type is used to construct key-value paired strings (i.e., a hash table or hashmap). It is up to you to think
of suitable keys for each event and what values to store against each key.

Response

Analytics_GameEvent_Response ();

No data is returned to the response handler for this request, the response just indicates that the request was
received.

GameStick SDK50

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

4.2.1.5 In-app purchasing APIs

These APIs issue requests to the in-app purchasing module of the service. Remember you will have to
override override the IRequestResponse class to handle the responses.

The In-App Purchasing Guidelines topic explains what you need to do to support purchasing in more detail.

DatabaseInterfaceServiceInterface::InAppPurchase_GetPurchasedItems()

Description

Create a request to get all purchased items.

Parameters

None.

Response

InAppPurchase_GetPurchasedItems_Response (const AppItems &data);

The data returned will be a list of all the purchased items, which you can iterate through — see the AppItems
class reference page.

DatabaseInterfaceServiceInterface::InAppPurchase_GetItemsForPurchase()

Description

Create a request to get all items available for purchase.

Parameters

None.

Response

InAppPurchase_GetItemsForPurchase_Response (const AppItems &data);

The data returned will be a list of the items available for purchase, which you can iterate through — see the
AppItems class reference page.

DatabaseInterfaceServiceInterface::InAppPurchase_PurchaseItem(const std::string &item_id)

Description

Create a request to purchase an item.

Parameters

API Reference 51

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

const std::string item_id
 String value representing the
item id.

Response

InAppPurchase_PurchaseItem_Response (bool bought);

The boolean value passed back to your response handler will indicate whether the purchase request was
successful.

DatabaseInterfaceServiceInterface::InAppPurchase_GetPurchasedItemURL(const std::string
&item_id)

Description

Request the URL of the purchased item.

Parameters

const std::string item_id
 String value representing the
item id.

Response

InAppPurchase_GetPurchasedItemURL_Response (const std::string &url);

4.2.2 IRequestResponse

This interface class provides the methods needed to receive messages back from the service. You need to
implement your own object that uses this interface and provides something for each of the following methods:

 virtual void LeaderBoard_GetTop50_Response (const LeaderboardData &data) = 0;

 virtual void LeaderBoard_GetRange_Response (const LeaderboardData &data) = 0;

 virtual void LeaderBoard_GetNearest_Response (const LeaderboardData &data) = 0;

 virtual void LeaderBoard_SaveScore_Response () = 0;

 virtual void Game_SaveState_Response () = 0;

 virtual void Game_LoadState_Response (const unsigned char *data, size_t size) = 0;

 virtual void Achievement_GetAllAchievements_Response (const Achievements &data) = 0;

 virtual void Achievement_SetAchievementComplete_Response () = 0;

 virtual void Analytics_GameEvent_Response () = 0;

 virtual void InAppPurchase_GetPurchasedItems_Response (const AppItems &data) = 0;

 virtual void InAppPurchase_GetItemsForPurchase_Response (const AppItems &data) = 0;

 virtual void InAppPurchase_PurchaseItem_Response (bool bought) = 0;

 virtual void InAppPurchase_GetPurchasedItemURL_Response (const std::string &url) = 0;

GameStick SDK52

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 virtual void RequestFailed_Response (DatabaseInterfaceCalls::Request request,

 const std::string &message) = 0;

The service will then call your implementations of these methods in order to send information back to your
application. Note that the data is often passed via objects such as Achievements, AppItems and
LeaderboardData which we have provided to help with parsing the information.

Note that all objects passed as parameters to your response handler methods will be deleted after your
method completes, so you should not hold any reference or pointers to these parameters. If you want the data
to persist, you will need to copy it to your own data structures somehow.

Error handling

You will need to implement RequestFailed_Response() in order to listen out for messages back from the
service telling you which request did not work (a string is also returned containing an error message).

The id of the SDK request which failed is passed back via the Request type which is an enum:

enum Request

{

 LeaderBoard_GetTop50,

 LeaderBoard_GetRange,

 LeaderBoard_GetNearest,

 LeaderBoard_SaveScore,

 Game_SaveState,

 Game_LoadState,

 Achievement_GetAllAchievements,

 Achievement_SetAchievementComplete,

 Analytics_GameEvent,

 InAppPurchase_GetPurchasedItems,

 InAppPurchase_GetItemsForPurchase,

 InAppPurchase_PurchaseItem,

 InAppPurchase_GetPurchasedItemURL,

 NumberOfRequests

};

Example

The following very basic code example shows how you might implement the IRequestResponse interface and
provide handlers for all the call-backs. Naturally in your own code you will eventually need to do something
more complex...

MyRequestResponse.h:

#include <iostream>

#include <vector>

#include "databaseinterfaceserviceinterface.h"

using namespace PlayJam;

class RequestResponse : public DatabaseInterfaceServiceInterface::IRequestResponse

{

API Reference 53

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

public:

 RequestResponse(void);

 ~RequestResponse(void);

 virtual void LeaderBoard_GetTop50_Response (const LeaderboardData &data);

 virtual void LeaderBoard_GetRange_Response (const LeaderboardData &data);

 virtual void LeaderBoard_GetNearest_Response (const LeaderboardData &data);

 virtual void LeaderBoard_SaveScore_Response ();

 virtual void Game_SaveState_Response ();

 virtual void Game_LoadState_Response (const unsigned char *data, size_t size);

 virtual void Achievement_GetAllAchievements_Response (const Achievements &data);

 virtual void Achievement_SetAchievementComplete_Response ();

 virtual void Analytics_GameEvent_Response ();

 virtual void InAppPurchase_GetPurchasedItems_Response (const AppItems &data);

 virtual void InAppPurchase_GetItemsForPurchase_Response (const AppItems &data);

 virtual void InAppPurchase_PurchaseItem_Response (bool bought);

 virtual void InAppPurchase_GetPurchasedItemURL_Response (const std::string &url);

 virtual void RequestFailed_Response (DatabaseInterfaceCalls::Request request,

 const std::string &message);

};

MyRequestResponse.cpp:

#include "MyRequestResponse.h"

RequestResponse::RequestResponse(void)

{

}

RequestResponse::~RequestResponse(void)

{

}

void RequestResponse::LeaderBoard_GetTop50_Response (const LeaderboardData &data)

{

std::vector<LeaderboardData::Entry> items = data.GetEntries();

std::cout << "CallBack LeaderBoard_GetTop50_Response" << std::endl;

for (int i = 0; i < items.size(); i++)

{

std::cout << "Item : " << items[i].Name() << std::endl;

std::cout << "Item : " << items[i].Score() << std::endl;

std::cout << "Item : " << items[i].AvatarID() << std::endl;

std::cout << "Item : " << items[i].Position() << std::endl;

}

}

void RequestResponse::LeaderBoard_GetRange_Response (const LeaderboardData &data)

{

std::cout << "CallBack LeaderBoard_GetRange_Response" << std::endl;

std::vector<LeaderboardData::Entry> items = data.GetEntries();

for (int i = 0; i < items.size(); i++)

{

std::cout << "Item : " << items[i].Name() << std::endl;

std::cout << "Item : " << items[i].Score() << std::endl;

std::cout << "Item : " << items[i].AvatarID() << std::endl;

GameStick SDK54

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

std::cout << "Item : " << items[i].Position() << std::endl;

}

}

void RequestResponse::LeaderBoard_GetNearest_Response (const LeaderboardData &data)

{

std::cout << "CallBack LeaderBoard_GetNearest_Response" << std::endl;

std::vector<LeaderboardData::Entry> items = data.GetEntries();

for (int i = 0; i < items.size(); i++)

{

std::cout << "Item : " << items[i].Name() << std::endl;

std::cout << "Item : " << items[i].Score() << std::endl;

std::cout << "Item : " << items[i].AvatarID() << std::endl;

std::cout << "Item : " << items[i].Position() << std::endl;

}

}

void RequestResponse::LeaderBoard_SaveScore_Response ()

{

std::cout << "CallBack LeaderBoard_SaveScore_Response" << std::endl;

}

void RequestResponse::Game_SaveState_Response ()

{

std::cout << "CallBack Game_SaveState_Response" << std::endl;

}

void RequestResponse::Game_LoadState_Response (const unsigned char *data,

 size_t size)

{

std::cout << "CallBack Game_LoadState_Response" << std::endl;

}

void RequestResponse::Achievement_GetAllAchievements_Response (const Achievements &data)

{

std::cout << "CallBack Achievement_GetAllAchievements_Response" << std::endl;

std::vector<Achievements::Item> items = data.GetItems();

for (int i = 0; i < items.size(); i++)

{

std::cout << "Item : " << items[i].ID() << std::endl;

std::cout << "Item : " << items[i].Name() << std::endl;

std::cout << "Item : " << items[i].Description() << std::endl;

std::cout << "Item : " << items[i].Type() << std::endl;

}

}

void RequestResponse::Achievement_SetAchievementComplete_Response ()

{

std::cout << "CallBack Achievement_SetAchievementComplete_Response" << std::endl;

}

void RequestResponse::Analytics_GameEvent_Response ()

{

std::cout << "CallBack Analytics_GameEvent_Response" << std::endl;

}

void RequestResponse::InAppPurchase_GetPurchasedItems_Response (const AppItems &data)

{

std::vector<AppItems::Item> items = data.GetItems();

for (int i = 0; i < items.size(); i++)

API Reference 55

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

{

std::cout << "Item : " << std::endl;

}

std::cout << "CallBack InAppPurchase_GetPurchasedItems_Response" << std::endl;

}

void RequestResponse::InAppPurchase_GetItemsForPurchase_Response (const AppItems &data)

{

std::vector<AppItems::Item> items = data.GetItems();

for (int i = 0; i < items.size(); i++)

{

std::cout << "Item : " << std::endl;

}

std::cout << "CallBack InAppPurchase_GetItemsForPurchase_Response" << std::endl;

}

void RequestResponse::InAppPurchase_PurchaseItem_Response (bool bought)

{

std::cout << "CallBack InAppPurchase_PurchaseItem_Response" << std::endl;

}

void RequestResponse::InAppPurchase_GetPurchasedItemURL_Response (const std::string &url)

{

std::cout << "CallBack InAppPurchase_GetPurchasedItemURL_Response" << std::endl;

}

void RequestResponse::RequestFailed_Response (DatabaseInterfaceCalls::Request request,

 const std::string &message)

{

std::cout << "Response : " << request << "Message : " << message << std::endl;

}

4.2.3 Achievements

This object wraps the data for achievements that will be returned by the service via the IRequestResponse
interface you implemented for:

 virtual void Achievement_GetAllAchievements_Response (const Achievements &data) = 0;

Note that an Achievements object is returned as a result of the DatabaseInterfaceServiceInterface::
Achievement_GetAllAchievements() API call. It won't come as a surprise to you then, that the object
encodes a list of achievements (actually returned via the service as some JSON, but parsed for your
convenience by this class).

GetItems — The GetItems method is used to access the items in the object.

Item — this represents a particular item in the Achievement data (i.e., a single element from the list of
achievements).

ID — (int) The achievement id number (allocated when the achievement was defined via the PlayJam
Publishing Portal).

GameStick SDK56

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Name — (string) Name of the achievement.

Description — (string) Description of the achievement.

Type — (string) The achievement type.

FileName — (string) Filename of some data passed back, associated with the achievement.

FileURL — (string) The URL of some data associated with the achievement.

isCurrentUserOwner — (bool) Indicates whether the achievement was completed by the current user.
This will therefore be true for those achievements that you have set to be complete using
DatabaseInterfaceServiceInterface::Achievement_SetAchievementComplete.

XPValue — (int) The number of experience points to be granted to the player for completing the
achievement.

Example

The following very simple example shows how to implement IRequestResponse to provide your response
handling class, override the get all achievements response, and iterate through the data returned (here we just
write the data out to the log, of course you will want to do something more intelligent and useful...).

#include "databaseinterfaceserviceinterface.h"

using namespace PlayJam;

class RequestResponse : public DatabaseInterfaceServiceInterface::IRequestResponse

{

public:

RequestResponse(void);

~RequestResponse(void);

 ...

 virtual void Achievement_GetAllAchievements_Response (const Achievements &data);

 ...

 virtual void RequestFailed_Response (DatabaseInterfaceCalls::Request request,

 const std::string &message);

};

void RequestResponse::Achievement_GetAllAchievements_Response (const Achievements &data)

{

 std::cout << "CallBack Achievement_GetAllAchievements_Response" << std::endl;

 std::vector<Achievements::Item> items = data.GetItems();

 for (int i = 0; i < items.size(); i++)

 {

API Reference 57

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 std::cout << "Item : " << items[i].ID() << std::endl;

 std::cout << "Item : " << items[i].Name() << std::endl;

 std::cout << "Item : " << items[i].Description() << std::endl;

 std::cout << "Item : " << items[i].Type() << std::endl;

 }

}

4.2.4 AppItems

This object wraps the data for application items that will be returned by the service via the IRequestResponse
interface you implemented for:

 virtual void InAppPurchase_GetPurchasedItems_Response (const AppItems &data) = 0;

 virtual void InAppPurchase_GetItemsForPurchase_Response (const AppItems &data) = 0;

In other words this class is used to represent in-app purchase items you might have defined and which can be
returned via the service in response to API calls.

GetItems — The GetItems method is used to access the items in the object.

Item — this represents a particular item in the AppItems data (i.e., a single element from the list of
application items).

ID — (string) The application application purchase item id.

Name — (string) Name of the application purchase item.

Description — (string) Description of the application purchase item.

Cost — (string) Value representing the cost of the purchase item.

Example

The following very simple example shows how to implement IRequestResponse to provide your response
handling class, override the achievements response call, and iterate through the achievements data returned
(here we just write the data out to the log, of course you will want to do something more interesting).

#include "databaseinterfaceserviceinterface.h"

using namespace PlayJam;

class RequestResponse : public DatabaseInterfaceServiceInterface::IRequestResponse

{

public:

RequestResponse(void);

~RequestResponse(void);

GameStick SDK58

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 ...

 virtual void InAppPurchase_GetPurchasedItems_Response (const AppItems &data);

 virtual void InAppPurchase_GetItemsForPurchase_Response (const AppItems &data);

 ...

 virtual void RequestFailed_Response (DatabaseInterfaceCalls::Request request,

 const std::string &message);

};

void RequestResponse::InAppPurchase_GetPurchasedItems_Response (const AppItems &data)

{

 std::vector<AppItems::Item> items = data.GetItems();

 for (int i = 0; i < items.size(); i++)

 {

 std::cout << "Item : " << std::endl;

 }

 std::cout << "CallBack InAppPurchase_GetPurchasedItems_Response" << std::endl;

}

void RequestResponse::InAppPurchase_GetItemsForPurchase_Response (const AppItems &data)

{

 std::vector<AppItems::Item> items = data.GetItems();

 for (int i = 0; i < items.size(); i++)

 {

 std::cout << "Item : " << std::endl;

 }

 std::cout << "CallBack InAppPurchase_GetItemsForPurchase_Response" << std::endl;

}

4.2.5 LeaderboardData

This object wraps the data for leader boards that will be returned by the service via the
IJavaDatabaseInterfaceClass interface you implemented for:

 virtual void LeaderBoard_GetTop50_Response (const LeaderboardData &data) = 0;

 virtual void LeaderBoard_GetRange_Response (const LeaderboardData &data) = 0;

 virtual void LeaderBoard_GetNearest_Response (const LeaderboardData &data) = 0;

In each case the value returned as LeaderboardData represents a list of items from the leader board (i.e., a
list of leader board entries). We provide accessors for parsing the entries to get the name, score, avatar id,
and position of each list entry without you having to parse the data yourself (which as always is actually
returned as some JSON behind the scenes).

GetItems — The GetItems method is used to access the items in the object.

Item — this represents a particular item in the leader board data (i.e., a single element from the list of leader
board entries returned).

Name — (string) The player's name.

API Reference 59

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Score — (int) the score.

AvatarID — (int) The id of the player's avatar.

Position — (int) The current position on the leader board of that score.

Example

The following very simple example shows how to implement IRequestResponse to provide your response
handling class, override the leader board get top 50 response, and iterate through the data returned (here we
just write the data out to the log, of course you will want to do something more intelligent and useful...).

#include "databaseinterfaceserviceinterface.h"

using namespace PlayJam;

class RequestResponse : public DatabaseInterfaceServiceInterface::IRequestResponse

{

public:

 RequestResponse(void);

 ~RequestResponse(void);

 ...

 virtual void LeaderBoard_GetTop50_Response (const LeaderboardData &data);

 virtual void LeaderBoard_GetRange_Response (const LeaderboardData &data);

 virtual void LeaderBoard_GetNearest_Response (const LeaderboardData &data);

 ...

 virtual void RequestFailed_Response (DatabaseInterfaceCalls::Request request,

 const std::string &message);

};

void RequestResponse::LeaderBoard_GetTop50_Response (const LeaderboardData &data)

{

 std::vector<LeaderboardData::Entry> items = data.GetEntries();

 std::cout << "CallBack LeaderBoard_GetTop50_Response" << std::endl;

 for (int i = 0; i < items.size(); i++)

 {

 std::cout << "Item : " << items[i].AvatarID() << std::endl;

 std::cout << "Item : " << items[i].Name() << std::endl;

 std::cout << "Item : " << items[i].Score() << std::endl;

 std::cout << "Item : " << items[i].Position() << std::endl;

 }

}

void RequestResponse::LeaderBoard_GetRange_Response (const LeaderboardData &data)

{

 std::cout << "CallBack LeaderBoard_GetRange_Response" << std::endl;

 std::vector<LeaderboardData::Entry> items = data.GetEntries();

 for (int i = 0; i < items.size(); i++)

GameStick SDK60

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 {

 std::cout << "Item : " << items[i].AvatarID() << std::endl;

 std::cout << "Item : " << items[i].Name() << std::endl;

 std::cout << "Item : " << items[i].Score() << std::endl;

 std::cout << "Item : " << items[i].Position() << std::endl;

 }

}

void RequestResponse::LeaderBoard_GetNearest_Response (const LeaderboardData &data)

{

 std::cout << "CallBack LeaderBoard_GetNearest_Response" << std::endl;

 std::vector<LeaderboardData::Entry> items = data.GetEntries();

 for (int i = 0; i < items.size(); i++)

 {

 std::cout << "Item : " << items[i].AvatarID() << std::endl;

 std::cout << "Item : " << items[i].Name() << std::endl;

 std::cout << "Item : " << items[i].Score() << std::endl;

 std::cout << "Item : " << items[i].Position() << std::endl;

 }

}

4.2.6 DownloadServiceInterface

The download services group of APIs issue requests to the downloads module of the service. Remember you
will have to override the IDownloadResponse class to handle the responses.

DownloadServiceInterface::DownloadPackage(const std::string url);

DownloadServiceInterface::DownloadResource(const std::string url);

Before you can make any download service SDK calls you will need to create your
DownloadServiceInterface object and associate it with your response handler object, which you do by
passing your handler to the DownloadResponse constructor like so:

 response = new DownloadResponse();

 service_interface = new DownloadServiceInterface(response);

DownloadServiceInterface::DownloadPackage(const std::string url)

Description

Requests a package (or large file) download from a server. Progress messages are sent during download. This
can be used for larger files such as game levels and has higher priority.

Note that if you make multiple requests to DownloadPackage(), the packages will be returned from the
service in FIFO (first-in first-out) order, i.e., the packages are returned in the order you requested them.

API Reference 61

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Parameters

const std::string url The file to be downloaded.

Response

One of:

DownloadSuccess (const std::string &url, const std::string &destination);

DownloadFailed (const std::string &url, const std::string &message);

DownloadServiceInterface::DownloadResource(const std::string url)

Description

Create a request to download a file. This is intended for smaller, lower priority files and doesn't issue progress
report messages.

Note that if you make multiple requests to DownloadResource(), the files will be returned from the service in
FILO (first-in last-out) order, i.e., the most recent request will be downloaded first. This means for example
that when you draw a screen full of graphics the last graphic requested will be sent first.

Parameters

const std::string url The file to be downloaded.

Response

One of:

DownloadSuccess (const std::string &url, const std::string &destination);

DownloadFailed (const std::string &url, const std::string &message);

4.2.7 IDownloadResponse

This interface class provides the methods needed to receive messages back from the download service. You
need to implement your own object that uses this interface and provides something for each of the following
methods:

 class IDownloadResponse

 {

 public:

 virtual void DownloadProgress (const std::string &url, int progress) = 0;

 virtual void DownloadSuccess (const std::string &url, const std::string &destination) = 0;

 virtual void DownloadFailed (const std::string &url, const std::string &message) = 0;

 };

GameStick SDK62

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

DownloadProgress(String url, int progress)

Description

Will be called by the service when a download progress callback occurs.

Parameters

String url The file being downloaded.

int progress
The amount downloaded so far as a
percentage.

Return

None.

DownloadSuccess(String url, String destination)

Description

Will be called when a download success callback occurs.

The information passed to you in the parameters tell you the name of the file (a file you requested earlier via
DownloadServiceInterface::DownloadPackage or DownloadServiceInterface::Resource) and the
location on the stick in which the file is (temporarily) located.

Note that the file will be removed from the stick when the call to this method ends, so you will need to read
the contents or copy it to where you need it in your DownloadSuccess method.

Parameters

String url The file being downloaded.

String destination
The temporary local location of the
downloaded file.

Return

None.

DownloadFailed(String url, String message)

API Reference 63

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Description

Will be called when a download failed callback occurs.

The information passed to you in the parameters tell you the name of the file (a file you requested earlier via
DownloadServiceInterface::DownloadPackage or DownloadServiceInterface::Resource) and an error
message indicating what went wrong.

Parameters

String url The file being downloaded.

String message The error message.

Return

None.

4.3 Unity API

Unity developers will access the API via a C# wrapper, so rather than consult the Java or C++ class reference,
you should look here as there are some slight differences.

Bear in mind the overall structure of the SDK is that you send messages, via API calls, to a service running on
the stick that will use the internet to make a request to the PlayJam server. The responses are then sent by
the server and picked up by the service running on the stick. In order to receive the response, you need to
implement listening objects in your code, and to do this you use additional classes provided in the SDK.

The data is returned in JSON form — unlike the Java and C++ versions of the SDK, we haven't (yet) included
any classes to parse and extract this data for you, so you will have to search the JSON form string that is
returned by the service and look for the suitable tags yourself. See the JSON Response Data section for
details of the data returned in this way for each request.

The API calls are defined in the following class:

PlayJamServices

The reponses you need to implement are defined in the following class:

ServiceResponseHandler

Overview

Before making a request of the service you need to instantiate a PlayJamServices object (this is defined in
the PlayJamServices.cs script which is included in your download package).

PlayJamServices provides a set of methods representing service calls / requests (in fact it's a wrapper around
the Java API). It's important to remember that PlayJamServices is used to make requests — the responses
to those requests are managed via the ServiceResponseHandler class.

GameStick SDK64

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

In order to make PlayJamServices requests, you need to instantiate PlayJamServices somewhere in your
code and configure it via the PlayJamServices.SetResponseHandler() method (more below). We can now
make service calls from any of Unity's Update or OnGUI methods in that implementation script.

Next, you will need to extend the ServiceResponseHandler class, implementing each of its methods (so,
you need an OnLeaderBoardGetTop50Success()method to handle the successful results of a call to the
LeaderBoardGetTop50 request, for example). This will handle responses and must be placed on a
GameObject whose name must be indicated to PlayJamServices via its SetResponseHandler(string name)
method before any service calls are made (or else responses will not be received).

You will also need to implement a OnDatabaseFailed() method to handle a failure request (whether or not
you intend to do anything). Make sure you implement each method listed in ServiceResponseHandler.cs in
your object (even if your methods don't actually do anything yet). Follow the example in
ExampleServiceResponseHandler.cs (which just shows a simple message for each request).

Override and implement each method listed in ServiceResponseHandler.cs in your derived implementation
class (any unimplemented responses will be handled by the base class method, which do nothing). The
example in ExampleServiceResponseHandler.cs, which shows a simple message for each request, is a
good place to start.

Provided scripts

In the Assets/Scripts folder there are 4 scripts:

PlayJamServices.cs

This provides the GameStick API functions you can call from Unity via a sealed class
PlayJamServices. You should not edit this file. Note that you will need the supplied JAR files to be in
place in order to work (see the Set Up Guide).

ExampleServiceRequests.cs

This is a simple example showing the use of the PlayJamServices class in your application. This
example just creates a PlayJamServices object, then passes the object a suitable response handler
(which is defined in the ExampleServiceResponseHandler.cs script...) and makes some calls to the
API in response to standard Unity button-press events.

ServiceResponseHandler.cs

This provides the response handler class which you must implement to receive and handle messages
from the PlayJam services on the GameStick. You will need to use this class in your own code to
handle messenges (note that you must implement something for every method in your code, even if
your methods do not do anything at first, or there is the potential for run-time errors). Again, do not
edit this file.

Note: ServiceResponseHandler extends MonoBehaviour and as such, your implementation of it
must be dropped onto a GameObject in order to receive responses (from Java). This object must be
specified to the PlayJamServices instance via SetResponseHandler or the constructor (which
enables Java to direct the responses to the correct place).

API Reference 65

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

ExampleServiceResponseHandler.cs

This is an example showing how you might implement a minimal version of the
ServiceResponseHandler class in your code. Feel free to copy this and use it as a starting point.

In the ExampleServicesRequests.cs script, we create a class ExampleServiceRequests, based for
convenience on the standard MonoBehaviour class in Unity.

In this class, we create a new PlayJamServices object, and tell it about our response handler:

PlayJamServices services;

void Start()

{

 services = new PlayJamServices();

 services.SetResponseHandler("ExampleServiceResponseHandler");

}

Our example response handler function will be defined in the ExampleServiceResponseHandler.cs file
(based on the ServiceResponseHandler class).

In the rest of this ExampleServicesRequests.cs script we can then make calls to the PlayJam services in
response to Unity events (the script contains some simple examples of this).

In the ExampleServiceResponseHandler.cs script, we create a ExampleServiceResponseHandler class,
based on the ServiceResponseHandler class defined in ServiceResponseHandler.cs script.

 public class ExampleServiceResponseHandler : ServiceResponseHandler

 {

 ...

 }

Make sure you implement something here for every response, even if it is trivial / empty.

4.3.1 PlayJamServices

The PlayJamServices class provides APIs relating to each of the following parts of the PlayJam On-line
Services:

Leader board APIs

LeaderBoard_GetTop50()

LeaderBoard_GetRange(int from, int to);

LeaderBoard_SaveScore(int score);

LeaderBoard_GetNearest(int range, bool sortAscending);

Save / load game state APIs

Game_SaveState(byte[] data);

Game_LoadState()

GameStick SDK66

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Achievements APIs

Achievement_GetAllAchievements();

Achievement_SetAchievmentComplete(string id);

Analytics APIs

Analytics_GameEvent(string hashmap);

In app purchasing APIs

InAppPurchase_GetPurchasedItems()

InAppPurchase_GetItemsForPurchase()

InAppPurchase_PurchaseItem(string item_id)

InAppPurchase_GetPurchasedItemURL(string item_id)

Download APIs

DownloadPackage(string url);

DownloadResource(string url);

4.3.1.1 Leaderboard APIs

These APIs issue requests to the leader board service. Remember you will have to override the
ServiceResponseHandler class to handle the responses from the service.

LeaderBoard_GetTop50()

Description

Create a request to get top 50 leader-board entries.

Parameters

None.

Response

OnLeaderBoardGetTop50Success(string response)

LeaderBoard_GetRange(int from, int to)

Description

Create a request to get a set of leader-board entries.

Parameters

API Reference 67

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

int from
The highest ranking entry on the
leader-board you want to get (1
being the top ranked entry).

Response

OnLeaderBoardGetRangeSuccess(string response)

LeaderBoard_SaveScore(int score)

Description

Create a request to set a leader-board entry.

Parameters

int score
The score to save into the leader-
board.

Response

OnLeaderBoardSaveScoreSuccess(string response)

LeaderBoard_GetNearest(int range, boolean sort_ascending)

Description

Create a request to get a set of leader-board entries near to the current score (i.e., the last score saved with
LeaderBoard_SaveScore).

Parameters

int range

The size of the range of nearby
values - for example if you want the
5 leaders above and 5 below the
last score saved, specify 5 here.

Response

OnLeaderBoardGetNearestSuccess(string response)

GameStick SDK68

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

4.3.1.2 Save State APIs

These APIs issue requests to the Save State module of the service. Remember you will have to override the
ServiceResponseHandler class to handle any responses from the service.

Game_SaveState(byte[] data)

Description

Create a request to save the current game state.

Parameters

byte [] data
Your data (which should be stored
as an array of byte/char data).

Response

OnGameSaveStateSuccess(string response)

Game_LoadState()

Description

Create a request to load the previously saved game state.

Parameters

None.

Response

OnGameLoadStateSuccess(string response)

4.3.1.3 Achievements APIs

These APIs issue requests to the Achievements module of the service. Remember you will have to override
the ServiceResponseHandler class to handle the responses.

Achievement_GetAllAchievements()

Description

Create a request to get all game achievements.

Parameters

API Reference 69

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

None.

Response

OnAchievementGetAllAchievementsSuccess(string response)

Achievement_SetAchievmentComplete(string id)

Description

Create a request to set an achievement as completed.

Parameters

string id
String representing the achievement
id.

Response

OnAchievementSetAchievementCompleteSuccess(string response)

4.3.1.4 In-app purchasing APIs

These APIs issue requests to the in-app purchasing module of the service. Remember you will have to
override the ServiceResponseHandler class to handle the responses.

The In-App Purchasing topic explains what you need to do to support purchasing in more detail.

InAppPurchase_GetPurchasedItems()

Description

Create a request to get all purchased items.

Parameters

None.

Response

OnInAppPurchaseGetPurchasedItemsSuccess(string response)

InAppPurchase_GetItemsForPurchase()

GameStick SDK70

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Description

Create a request to get all items available for purchase.

Parameters

None.

Response

OnInAppPurchaseGetItemsForPurchaseSuccess(string response)

InAppPurchase_PurchaseItem(string item_id)

Description

Create a request to purchase an item.

Parameters

string item_id
String value representing the item
id.

Response

OnInAppPurchasePurchaseItemSuccess(string response)

InAppPurchase_GetPurchasedItemURL(string item_id)

Description

Request the URL of the purchased item.

Parameters

string item_id
String value representing the item
id.

Response

OnInAppPurchaseGetPurchasedItemURLSuccess(string response)

API Reference 71

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

4.3.1.5 Analytics APIs

These APIs relate to storing data to do with game events.

The service will save the data on the PlayJam server, so you can use this API to store any arbitrary data to do
with events during the game which you want to track - for example, you can store something every time a
player performs a certain action (reads the instructions, quits a game, or whatever) so you can use this data
later to help analyse how people interact with your game.

 Remember you will have to override the ServiceResponseHandler class to handle the responses from the
service.

Analytics_GameEvent(string hashmap);

Description

Create a request to set a game event.

Parameters

string hashmap
A set of key-value paired strings
representing the game event data.

Response

OnAnalyticsGameEventSuccess (string response);

No important data is returned to the response handler for this request, the response just indicates that the
request was received.

4.3.1.6 Download service APIs

The download services group of APIs issue requests to the downloads module of the service. Remember you
will have to provide the appropriate methods in your implementation of the ServiceResponseHandler class to
handle the responses.

DownloadPackage(string url)

Description

Requests a package (or large file) download from a server. Progress messages are sent during download.
This can be used for larger files such as game levels and has higher priority.

Note that if you make multiple requests to DownloadPackage(), the packages will be returned from the
service in FIFO (first-in first-out) order, i.e., the packages are returned in the order you requested them.

Parameters

string url The file to be downloaded.

GameStick SDK72

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

Response

OnDownloadSuccess(string response) or OnDownloadFailed(string response).

DownloadResource(string url)

Description

Create a request to download a file.This is intended for smaller, lower priority files and doesn't issue progress
report messages.

Note that if you make multiple requests to DownloadResource(), the files will be returned from the service in
FILO (first-in last-out) order, i.e., the most recent request will be downloaded first. This means for example
that when you draw a screen full of graphics the last graphic requested will be sent first.

Parameters

string url The file to be downloaded.

Response

OnDownloadSuccess(string response) or OnDownloadFailed(string response).

4.3.2 ServiceResponseHandler

The ServiceResponseHandler interface class provides the methods needed to receive messages back from
the service. You need to implement your own object that uses this interface and provides something for each
of the following methods:

public abstract class ServiceResponseHandler : MonoBehaviour

{

 // not an interface, as it must extend MonoBehaviour.

 // members are virtual, not abstract, as user may not wish to override all.

 public virtual void OnLeaderBoardGetTop50Success(string response) {return;}

 public virtual void OnLeaderBoardGetRangeSuccess(string response) {return;}

 public virtual void OnLeaderBoardGetNearestSuccess(string response) {return;}

 public virtual void OnLeaderBoardSaveScoreSuccess(string response) {return;}

 public virtual void OnGameSaveStateSuccess(string response) {return;}

 public virtual void OnGameLoadStateSuccess(string response) {return;}

 public virtual void OnAchievementGetAllAchievementsSuccess(string response) {return;}

 public virtual void OnAchievementSetAchievementCompleteSuccess(string response) {return;}

 public virtual void OnAnalyticsGameEventSuccess(string response) {return;}

 public virtual void OnInAppPurchaseGetPurchasedItemsSuccess(string response) {return;}

 public virtual void OnInAppPurchaseGetItemsForPurchaseSuccess(string response) {return;}

 public virtual void OnInAppPurchasePurchaseItemSuccess(string response) {return;}

 public virtual void OnInAppPurchaseGetPurchasedItemURLSuccess(string response) {return;}

API Reference 73

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

 public virtual void OnDatabaseFailed(string response) {return;}

 public virtual void OnDownloadProgress(string response) {return;}

 public virtual void OnDownloadSuccess(string response) {return;}

 public virtual void OnDownloadFailed(string response) {return;}

}

You can use the code in ExampleServiceResponseHandler.cs as a starting point.

In the ExampleServicesRequests.cs script, we create a class ExampleServiceRequests, based for
convenience on the standard MonoBehaviour class in Unity.

In this class, we create a new PlayJamServices object, and tell it about our response handler:

PlayJamServices services;

void Start()

{

 services = new PlayJamServices();

 services.SetResponseHandler("ExampleServiceResponseHandler");

}

Our example response handler function will be defined in the ExampleServiceResponseHandler.cs file
(based on the ServiceResponseHandler class).

In the rest of this ExampleServicesRequests.cs script we can then make calls to the PlayJam services in
response to Unity events (the script contains some simple examples of this).

In the ExampleServiceResponseHandler.cs script, we create a ExampleServiceResponseHandler class,
based on the ServiceResponseHandler class defined in ServiceResponseHandler.cs script.

 public class ExampleServiceResponseHandler : ServiceResponseHandler

 {

 ...

 }

Make sure you implement something here for every response, even if it is trivial / empty.

Note that in all cases, the data returned from the service via the handler call-back functions will be a string
containing data in JSON format. Currently the Unity implementation of the GameStick SDK does not contain
any helper classes to parse this JSON for you, so you will have to extract the relevant information in your own
code.

4.3.3 JSON Response Data

The data passed back from the service to your response handler functions will, for Unity users, be in JSON
form which you will have to parse yourself (when time allows we will add classes to help with this).

GameStick SDK74

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

It shouldn't be too hard to extract the relevant information for each response, you will just need to match the
appropriate tags and get the corresponding value. We've listed the tags used in different types of response
data below.

Achievement responses

The responses to request involving in-game achievements will contain the following tags:

"id" — Integer representing the achievement id number (allocated when the achievement was defined
via the PlayJam Developer App).

"achievementName" — String name of the achievement.

"description" — String description of the achievement.

"achievementType" — String representing the achievement type.

"fileName" — String representing the location of some data associated with the achievement.

"fileUrl" — String representing the URL of some data associated with the achievement.

"isCurrentUserOwner" — Boolean representing whether the achievement was completed by the
current user. This will therefore be true for those achievements that you have set to be complete using
PlayJamServices.Achievement_SetAchievmentComplete().

"xpValue" — Integer representing the number of experience points to be granted to the player for
completing the achievement.

Leaderboard responses

The responses to request involving on line leader boards will contain the following tags:

"userPlayTag" — String representing the player's name.

"score" — Integer value giving the score.

"avatarId" — Integer value representing the id of the player's avatar.

"position" — Integer value representing the current position on the leader board of that score.

AppItems (purchase items) responses

The responses to request involving in-game purchases will contain the following tags:

"id" — String representing the application application purchase item id.

"name" — String name of the application purchase item.

"description" — String description of the application purchase item.

API Reference 75

© 2013 PlayJam Ltd. Confidential Information - Do Not Distribute

"cost" — Float value representing the cost of the purchase item.

	Introduction
	SDK Overview

	GameStick Standardization and UI Guidelines
	General Guidelines
	On-line Services SDK Usage Guidelines
	In-App Purchasing Guidelines

	Controller Guidelines
	Button Mappings

	Adapting from Mobile or Tablet
	GameStick Images

	Developer Setup Guide
	Java
	Marmalade
	Unity

	API Reference
	Java API
	DatabaseInterfaceService
	Leaderboard APIs
	Save State APIs
	Achievements APIs
	Analytics APIs
	In-app purchasing APIs

	IJavaDatabaseInterfaceResponse
	Achievements
	AppItems
	LeaderboardData
	DownloadServiceInterface
	IDownloadResponse

	C++ API
	DatabaseInterfaceServiceInterface
	Leaderboard APIs
	Save State APIs
	Achievements APIs
	Analytics APIs
	In-app purchasing APIs

	IRequestResponse
	Achievements
	AppItems
	LeaderboardData
	DownloadServiceInterface
	IDownloadResponse

	Unity API
	PlayJamServices
	Leaderboard APIs
	Save State APIs
	Achievements APIs
	In-app purchasing APIs
	Analytics APIs
	Download service APIs

	ServiceResponseHandler
	JSON Response Data

